Abelian Exchange Modules
نویسنده
چکیده
Let Mk be a right k-module with endomorphism ring E = End(Mk). We prove that if E is an Abelian exchange ring then Mk has the full exchange property. We also give an extension of this result in the case E is regular.
منابع مشابه
$PI$-extending modules via nontrivial complex bundles and Abelian endomorphism rings
A module is said to be $PI$-extending provided that every projection invariant submodule is essential in a direct summand of the module. In this paper, we focus on direct summands and indecomposable decompositions of $PI$-extending modules. To this end, we provide several counter examples including the tangent bundles of complex spheres of dimensions bigger than or equal to 5 and certain hyper ...
متن کاملDilations for $C^ast$-dynamical systems with abelian groups on Hilbert $C^ast$-modules
In this paper we investigate the dilations of completely positive definite representations of (C^ast)-dynamical systems with abelian groups on Hilbert (C^ast)-modules. We show that if ((mathcal{A}, G,alpha)) is a (C^ast)-dynamical system with (G) an abelian group, then every completely positive definite covariant representation ((pi,varphi,E)) of ((mathcal{A}, G,alpha)) on a Hilbert ...
متن کاملSTRONGLY DUO AND CO-MULTIPLICATION MODULES
Let R be a commutative ring. An R-module M is called co-multiplication provided that foreach submodule N of M there exists an ideal I of R such that N = (0 : I). In this paper weshow that co-multiplication modules are a generalization of strongly duo modules. Uniserialmodules of finite length and hence valuation Artinian rings are some distinguished classes ofco-multiplication rings. In additio...
متن کامل. R A ] 1 1 Ju n 20 04 THE COUNTABLE AND FULL EXCHANGE PROPERTIES PACE
We show that cohopfian modules with finite exchange have countable exchange. In particular, a module whose endomorphism ring is Dedekind-finite and π-regular has the countable exchange property. We also show that a module whose en-domorphism ring is Dedekind-finite and regular has full exchange. Finally, working modulo the Jacobson radical, we prove that any module with the (C 2) property and a...
متن کاملThe non-abelian tensor product of normal crossed submodules of groups
In this article, the notions of non-abelian tensor and exterior products of two normal crossed submodules of a given crossed module of groups are introduced and some of their basic properties are established. In particular, we investigate some common properties between normal crossed modules and their tensor products, and present some bounds on the nilpotency class and solvability length of the...
متن کامل